Соли железа 3 цвет. Химические свойства железа и его соединений, их применение. Процесс производства чугуна в доменной печи
Формула:
Сульфат железа(II), железный купорос, FeSO 4 - соль серной кислоты и 2-х валентного железа. Твёрдость - 2.
В химии железным купоросом называют кристаллогидрат сульфата железа(II) . Кристаллы светло-зелёного цвета. Применяется втекстильной промышленности, в сельском хозяйстве как инсектицид, для приготовления минеральных красок.
Природный аналог - минерал мелантерит ; в природе встречается в кристаллах моноклиноэдрической системы, зелёно-жёлтого цвета, в виде примазок или натёков.
Молярная масса : 151,91 г/моль
Плотность: 1,8-1,9 г/см³
Температура плавления : 400 °C
Растворимость в воде : 25.6 г/100 мл
Сульфат 2-валентного железа выделяется при температурах от 1,82 °C до 56,8 °C из водных растворов в виде светло-зелёных кристаллов FeSO 4 · 7H 2 О, называется в технике железным купоросом (кристаллогидрат). В 100 г воды растворяется: 26,6 г безводного FeSO 4 при 20 °C и 54,4 г при 56 °C.
Растворы сульфата 2-валентного железа под действием кислорода воздуха со временем окисляются, переходя в сульфат железа (III):
12FeSO 4 + O 2 + 6H 2 O = 4Fe 2 (SO 4) 3 + 4Fe(OH) 3 ↓
При нагревании свыше 480 °C разлагается:
2FeSO 4 → Fe 2 O 3 + SO 2 + SO 3
Получение.
Железный купорос можно приготовить действием разбавленной серной кислоты на железный лом, обрезки кровельного железа и т. д. В промышленности его получают как побочный продукт при травлении разбавленной H 2 SO 4 железных листов, проволоки и др., для удаленияокалины.
Fe + H 2 SO 4 = FeSO 4 + H 2
Другой способ - окислительный обжиг пирита:
2FeS 2 + 7O 2 + 2H 2 O = 2FeSO 4 + 2H 2 SO 4
Качественный анализ.
Аналитические реакции на катион железа (II ).
1. С гексацианоферратом(III) калия K 3 с образованием тёмно-синего осадка гексацианоферрата(III) железа(II) калия (“турнбулевой сини”), нерастворимого в кислотах, разлагающегося щелочами с образованием Fe(OH) 3 (ГФ).
FeSO 4 + K 3 KFe + K 2 SO 4
Оптимальная величина рН проведения реакции составляет 2-3. Реакция дробная, высокочувствительная. Мешают высокие концентрации Fe 3+ .
2. С сульфидом аммония (NH 4 ) 2 S с образованием чёрного осадка, растворимого в сильных кислотах (ГФ).
FeSO
4
+ (NH 4) 2 S
FeS
+ (NH 4) 2 SO 4
3.2. Аналитические реакции на сульфат-ион.
1. С групповым реактивом BaCl 2 + CaCl 2 или BaCl 2 (ГФ).
Дробное открытие сульфат-иона проводят в кислой среде, что позволяет устранить мешающее влияние CO 3 2- , PO 4 3- , и др., и при кипячении исследуемого раствора с 6 моль/дм 3 HCl для удаления S 2- , SO 3 2- , S 2 O 3 2- -ионов, которые могут образовать элементную серу, осадок которой можно принять за осадок BaSO 4 . Осадок BaSO 4 способен образовывать изоморфные кристаллы с KMnO 4 и окрашиваться в розовый цвет (повышается специфичность реакции).
Методика выполнения реакции в присутствии 0,002 моль/дм 3 KMnO 4 .
К 3-5 каплям испытуемого раствора добавляют равные объёмы растворов перманганата калия, хлорида бария и хлороводородной кислоты и энергично перемешивают 2-3 мин. Дают отстояться и, не отделяя осадка от раствора, добавляют 1-2 капли 3% раствора Н 2 О 2 , перемешивают и центрифугируют. Осадок должен остаться окрашенным в розовый цвет, а раствор над осадком обесцветиться.
2. С ацетатом свинца.
SO
4
2-
+ Pb 2+
PbSO 4
Методика : к 2 см 3 раствора сульфата добавляют 0,5 см 3 разбавленной хлороводородной кислоты и 0,5 см 3 раствора ацетата свинца; образуется белый осадок, растворимый в насыщенном растворе ацетата аммония или гидроксида натрия.
PbSO 4
+ 4 NaOH
Na 2
+ Na 2 SO 4
С cолями стронция – образование белого осадка, нерастворимого в кислотах (отличие от сульфитов).
SO
4
2
-
+ Sr 2+
SrSO 4
Методика : К 4-5 каплям анализируемого раствора добавляют 4-5 капель концентрированного раствора хлорида стронция, выпадает белый осадок.
С солями кальция – образование игольчатых кристаллов гипса CaSO 4 2H 2 O.
SO 4 2-
+ Са 2+
+ 2Н 2 О
СаSO 4
2Н 2 О
Методика: на предметное стекло наносят по капле анализируемого раствора и соли кальция, слегка подсушивают. Образовавшиеся кристаллы рассматривают под микроскопом.
Количественный анализ.
Перманганатометрия.
Определение массовой доли железа в образце соли Мора (NH 4) 2 Fe(SO 4) 2 6H 2 O перманганатометрическим методом
(вариант прямого титрования)
Определение основано на окислении железа(II) перманганатом калия до железа(III).
10 FeSO 4 + 2 KMnO 4 + 8 H 2 SO 4 = 5 Fe 2 (SO 4 ) 3 + 2 MnSO 4 + K 2 SO 4 + 8 H 2 O
М (Fe) = 55,85 г/моль
Методика: Точную навеску соли Мора, необходимую для приготовления 100 см 3 0,1 М раствора соли Мора, количественно переносят в мерную колбу вместимостью 100 см 3 , растворяют в небольшом количестве дистиллированной воды, после полного растворения доводят водой до метки, перемешивают. Аликвотную часть полученного раствора (индивидуальное задание) помещают в колбу для титрования, прибавляют равный объём разведённой серной кислоты (1:5) и медленно титруют раствором перманганата калия до слаборозового окрашивания раствора, устойчивого в течение 30 секунд.
Применение.
Применяют в производстве чернил ;
В красильном деле (для окраски шерсти в чёрный цвет);
Для консервирования дерева.
Список литературы.
Лурье Ю.Ю. Справочник по аналитической химии. Москва, 1972;
Методическое указание «Инструментальные методы анализа», Пермь, 2004;
Методическое указание «Качественный химический анализ», Пермь, 2003;
Методическое указание «Количественный химический анализ», Пермь, 2004;
Рабинович В.А., Хавин З.Я. Краткий химический справочник, Ленинград, 1991;
«Большая советская энциклопедия»;
В организме человека содержится около 5 г железа, большая часть его (70%) входит в состав гемоглобина крови.
Физические свойства
В свободном состоянии железо - серебристо-белый металл с сероватым оттенком. Чистое железо пластично, обладает ферромагнитными свойствами. На практике обычно используются сплавы железа - чугуны и стали.
Fe - самый главный и самый распространенный элемент из девяти d-металлов побочной подгруппы VIII группы. Вместе с кобальтом и никелем образует «семейство железа».
При образовании соединений с другими элементами чаще использует 2 или 3 электрона (В = II, III).
Железо, как и почти все d-элементы VIII группы, не проявляет высшую валентность, равную номеру группы. Его максимальная валентность достигает VI и проявляется крайне редко.
Наиболее характерны соединения, в которых атомы Fe находятся в степенях окисления +2 и +3.
Способы получения железа
1. Техническое железо (в сплаве с углеродом и другими примесями) получают карботермическим восстановлением его природных соединений по схеме:
Восстановление происходит постепенно, в 3 стадии:
1) 3Fe 2 O 3 + СО = 2Fe 3 O 4 + СO 2
2) Fe 3 O 4 + СО = 3FeO +СO 2
3) FeO + СО = Fe + СO 2
Образующийся в результате этого процесса чугун содержит более 2% углерода. В дальнейшем из чугуна получают стали - сплавы железа, содержащие менее 1,5 % углерода.
2. Очень чистое железо получают одним из способов:
а) разложение пентакарбонила Fe
Fe(CO) 5 = Fe + 5СО
б) восстановление водородом чистого FeO
FeO + Н 2 = Fe + Н 2 O
в) электролиз водных растворов солей Fe +2
FeC 2 O 4 = Fe + 2СO 2
оксалат железа (II)
Химические свойства
Fe - металл средней активности, проявляет общие свойства, характерные для металлов.
Уникальной особенностью является способность к «ржавлению» во влажном воздухе:
В отсутствие влаги с сухим воздухом железо начинает заметно реагировать лишь при Т > 150°С; при прокаливании образуется «железная окалина» Fe 3 O 4:
3Fe + 2O 2 = Fe 3 O 4
В воде в отсутствие кислорода железо не растворяется. При очень высокой температуре Fe реагирует с водяным паром, вытесняя из молекул воды водород:
3 Fe + 4Н 2 O(г) = 4H 2
Процесс ржавления по своему механизму является электрохимической коррозией. Продукт ржавления представлен в упрощенном виде. На самом деле образуется рыхлый слой смеси оксидов и гидроксидов переменного состава. В отличие от пленки Аl 2 О 3 , этот слой не предохраняет железо от дальнейшего разрушения.
Виды коррозии
Защита железа от коррозии
1. Взаимодействие с галогенами и серой при высокой температуре.
2Fe + 3Cl 2 = 2FeCl 3
2Fe + 3F 2 = 2FeF 3
Fe + I 2 = FeI 2
Образуются соединения, в которых преобладает ионный тип связи.
2. Взаимодействие с фосфором, углеродом, кремнием (c N 2 и Н 2 железо непосредственно не соединяется, но растворяет их).
Fe + Р = Fe x P y
Fe + C = Fe x C y
Fe + Si = Fe x Si y
Образуются вещества переменного состава, т к. бертоллиды (в соединениях преобладает ковалентный характер связи)
3. Взаимодействие с «неокисляющими» кислотами (HCl, H 2 SO 4 разб.)
Fe 0 + 2Н + → Fe 2+ + Н 2
Поскольку Fe располагается в ряду активности левее водорода (Е° Fe/Fe 2+ = -0,44В), оно способно вытеснять Н 2 из обычных кислот.
Fe + 2HCl = FeCl 2 + Н 2
Fe + H 2 SO 4 = FeSO 4 + Н 2
4. Взаимодействие с «окисляющими» кислотами (HNO 3 , H 2 SO 4 конц.)
Fe 0 - 3e - → Fe 3+
Концентрированные HNO 3 и H 2 SO 4 «пассивируют» железо, поэтому при обычной температуре металл в них не растворяется. При сильном нагревании происходит медленное растворение (без выделения Н 2).
В разб. HNO 3 железо растворяется, переходит в раствор в виде катионов Fe 3+ а анион кислоты восстанавливется до NO*:
Fe + 4HNO 3 = Fe(NO 3) 3 + NO + 2Н 2 O
Очень хорошо растворяется в смеси НСl и HNO 3
5. Отношение к щелочам
В водных растворах щелочей Fe не растворяется. С расплавленными щелочами реагирует только при очень высоких температурах.
6. Взаимодействие с солями менее активных металлов
Fe + CuSO 4 = FeSO 4 + Cu
Fe 0 + Cu 2+ = Fe 2+ + Cu 0
7. Взаимодействие с газообразным монооксидом углерода (t = 200°C, P)
Fe(порошок) + 5CO (г) = Fe 0 (CO) 5 пентакарбонил железа
Соединения Fe(III)
Fe 2 O 3 - оксид железа (III).
Красно-бурый порошок, н. р. в Н 2 O. В природе - «красный железняк».
Способы получения:
1) разложение гидроксида железа (III)
2Fe(OH) 3 = Fe 2 O 3 + 3H 2 O
2) обжиг пирита
4FeS 2 + 11O 2 = 8SO 2 + 2Fe 2 O 3
3) разложение нитрата
Химические свойства
Fe 2 O 3 - основный оксид с признаками амфотерности.
I. Основные свойства проявляются в способности реагировать с кислотами:
Fe 2 О 3 + 6Н + = 2Fe 3+ + ЗН 2 О
Fe 2 О 3 + 6HCI = 2FeCI 3 + 3H 2 O
Fe 2 О 3 + 6HNO 3 = 2Fe(NO 3) 3 + 3H 2 O
II. Слабокислотные свойства. В водных растворах щелочей Fe 2 O 3 не растворяется, но при сплавлении с твердыми оксидами, щелочами и карбонатами происходит образование ферритов:
Fe 2 О 3 + СаО = Ca(FeО 2) 2
Fe 2 О 3 + 2NaOH = 2NaFeО 2 + H 2 O
Fe 2 О 3 + MgCO 3 = Mg(FeO 2) 2 + CO 2
III. Fe 2 О 3 - исходное сырье для получения железа в металлургии:
Fe 2 О 3 + ЗС = 2Fe + ЗСО или Fe 2 О 3 + ЗСО = 2Fe + ЗСO 2
Fe(OH) 3 - гидроксид железа (III)
Способы получения:
Получают при действии щелочей на растворимые соли Fe 3+ :
FeCl 3 + 3NaOH = Fe(OH) 3 + 3NaCl
В момент получения Fe(OH) 3 - красно-бурый слизистоаморфный осадок.
Гидроксид Fe(III) образуется также при окислении на влажном воздухе Fe и Fe(OH) 2:
4Fe + 6Н 2 O + 3O 2 = 4Fe(OH) 3
4Fe(OH) 2 + 2Н 2 O + O 2 = 4Fe(OH) 3
Гидроксид Fe(III) является конечным продуктом гидролиза солей Fe 3+ .
Химические свойства
Fe(OH) 3 - очень слабое основание (намного слабее, чем Fe(OH) 2). Проявляет заметные кислотные свойства. Таким образом, Fe(OH) 3 имеет амфотерный характер:
1) реакции с кислотами протекают легко:
2) свежий осадок Fe(OH) 3 растворяется в горячих конц. растворах КОН или NaOH с образованием гидроксокомплексов:
Fe(OH) 3 + 3КОН = K 3
В щелочном растворе Fe(OH) 3 может быть окислен до ферратов (солей не выделенной в свободном состоянии железной кислоты H 2 FeO 4):
2Fe(OH) 3 + 10КОН + 3Br 2 = 2K 2 FeO 4 + 6КВr + 8Н 2 O
Соли Fe 3+
Наиболее практически важными являются: Fe 2 (SO 4) 3 , FeCl 3 , Fe(NO 3) 3 , Fe(SCN) 3 , K 3 4- желтая кровяная соль = Fe 4 3 берлинская лазурь (темно-синий осадок)
б) Fe 3+ + 3SCN - = Fe(SCN) 3 роданид Fe(III) (р-р кроваво-красного цвета)
Железо - восьмой элемент четвёртого периода в таблице Менделеева. Его номер в таблице (также его называют атомным) 26, что соответствует числу протонов в ядре и электронов в электронной оболочке. Обозначается первыми двумя буквами своего латинского эквивалента - Fe (лат. Ferrum - читается как «феррум»). Железо - второй по распространённости элемент в земной коре, процентное содержание - 4,65% (самый распространённый - алюминий, Al). В самородном виде данный металл встречается достаточно редко, чаще его добывают из смешанной руды с никелем.
Вконтакте
Какова же природа данного соединения? Железо как атом состоит из металлической кристаллической решётки, за счёт чего обеспечивается твёрдость соединений, содержащих этот элемент, и молекулярная стойкость. Именно в связи с этим данный металл - типичное твёрдое тело в отличие, например, от ртути.
Железо как простое вещество - металл серебристого цвета c типичными для этой группы элементов свойствами: ковкость, металлический блеск и пластичность. Помимо этого, железо обладает высокой реакционной активностью. О последнем свойстве свидетельствует тот факт, что железо очень быстро подвергается коррозии при наличии высокой температуры и соответствующей влажности. В чистом кислороде этот металл хорошо горит, а если раскрошить его на очень мелкие частицы, то они будут не просто гореть, а самовозгораться.
Зачастую железом мы называем не чистый металл, а его сплавы, содержащих углерод ©, например, сталь (<2,14% C) и чугун (>2,14% C). Также важное промышленное значение имеют сплавы, в которые добавляются легирующие металлы (никель, марганец, хром и другие), за счёт них сталь становится нержавеющей, т. е. легированной. Таким образом, исходя из этого становится понятным, какое обширное промышленное применение имеет этот металл.
Характеристика Fe

Химические свойства железа
Рассмотрим подробнее особенности этого элемента.
Свойства простого вещества
- Окисление на воздухе при высокой влажности (коррозийный процесс):
4Fe+3O2+6H2O = 4Fe (OH)3 - гидроксид (гидроокись) железа (III)
- Горение железной проволоки в кислороде с образованием смешанного оксида (в нём присутствует элемент и со степенью окисления +2, и со степенью окисления +3):
3Fe+2O2 = Fe3O4 (железная окалина). Реакция возможна при нагревании до 160 ⁰C.
- Взаимодействие с водой при высокой температуре (600−700 ⁰C):
3Fe+4H2O = Fe3O4+4H2
- Реакции с неметаллами:
а) Реакция с галогенами (Важно! При данном взаимодействии приобретает степень окисления элемента +3)
2Fe+3Cl2 = 2FeCl3 - хлорид трёхвалентного железа
б) Реакция с серой (Важно! При данном взаимодействии элемент имеет степень окисления +2)
Сульфид железа (III) - Fe2S3 можно получить в ходе другой реакции:
Fe2O3+ 3H2S=Fe2S3+3H2O
в) Образование пирита
Fe+2S = FeS2 - пирит. Обратите внимание на степень окисления элементов, составляющих данное соединение: Fe (+2), S (-1).
- Взаимодействие с солями металлов, стоящими в электрохимическом ряду активности металлов справа от Fe:
Fe+CuCl2 = FeCl2+Cu - хлорид железа (II)
- Взаимодействие с разбавленными кислотами (например, соляной и серной):
Fe+HBr = FeBr2+H2
Fe+HCl = FeCl2+ H2
Обратите внимание, что в этих реакция получается железо со степенью окисления +2.
- В неразбавленных кислотах, которые являются сильнейшими окислителями, реакция возможна только при нагревании, в холодных кислотах металл пассивируется:
Fe+H2SO4 (концентрированная) = Fe2 (SO4)3+3SO2+6H2O
Fe+6HNO3 = Fe (NO3)3+3NO2+3H2O
- Амфотерные свойства железа проявляются только при взаимодействии с концентрированными щелочами:
Fe+2KOH+2H2O = K2+H2 - тетрагидроксиферрат (II) калия выпадает в осадок.
Процесс производства чугуна в доменной печи
- Обжиг и последующее разложение сульфидных и карбонатных руд (выделение оксидов металла):
FeS2 —> Fe2O3 (O2, 850 ⁰C, -SO2). Эта реакция также является первым этапом промышленного синтеза серной кислоты.
FeCO3 —> Fe2O3 (O2, 550−600 ⁰C, -CO2).
- Сжигание кокса (в избытке):
С (кокс)+O2 (возд.) —> CO2 (600−700 ⁰C)
CO2+С (кокс) —> 2CO (750−1000 ⁰C)
- Восстановление руды, содержащий оксид, угарным газом:
Fe2O3 —> Fe3O4 (CO, -CO2)
Fe3O4 —> FeO (CO, -CO2)
FeO —> Fe (CO, -CO2)
- Науглероживание железа (до 6,7%) и расплавление чугуна (t⁰плавления - 1145 ⁰C)
Fe (твёрдый)+С (кокс) —> чугун. Температура реакции - 900−1200 ⁰C.
В чугуне всегда присутствует в виде зёрен цементит (Fe2C) и графит.
Характеристика соединений, содержащих Fe
Изучим особенности каждого соединения отдельно.
Fe3O4
Смешанный или двойной оксид железа, имеющий в своём составе элемент со степенью окисления как +2, так и +3. Также Fe3O4 называют железной окалиной
. Это соединение стойко переносит высокие температуры. Не вступает реакцию с водой, парами воды. Подвергается разложению минеральными кислотами. Может быть подвергнуто восстановлению водородом либо железом при высокой температуре. Как вы могли понять из вышеизложенной информации, является промежуточным продуктом в цепочке реакция промышленного производства чугуна.
Непосредственно же железную окалину применяют в производстве красок на минеральной основе, цветного цемента и изделий из керамики. Fe3O4 - это то, что получается при чернении и воронении стали. Получают смешанный оксид путём сгорания железа на воздухе (реакция приведена выше). Руда, содержащая оксиды, является магнетитом.
Fe2O3
Оксид железа (III), тривиальное название - красный железняк , соединение красно-коричневого цвета. Устойчиво к воздействию высоких температур. В чистом виде не образуется при окислении железа кислородом воздуха. Не вступает в реакцию с водой, образует гидраты, выпадающие в осадок. Плохо реагирует с разбавленными щелочами и кислотами. Может сплавляться с оксидами других металлов, образуя шпинели - двойные оксиды.
Красный железняк применяется в качестве сырья при промышленном получении чугуна доменным способом. Также ускоряет реакцию, то есть является катализатором, в аммиачной промышленности. Применяется в тех же областях, что и железная окалина. Плюс к этому использовался как носитель звука и картинки на магнитных лентах.
FeOH2
Гидроксид железа (II) , соединение, обладающее как кислотными, так и основными свойствами, преобладают последние, то есть, является амфотерным. Вещество белого цвета, которое быстро окисляется на воздухе, «буреет», до гидроокиси железа (III). Подвержено распаду при воздействии температуры. Вступает в реакцию и со слабыми растворами кислот, и со щелочами. В воде не растворим. В реакции выступает в роли восстановителя. Является промежуточным продуктом в реакции коррозии.
Обнаружение ионов Fe2+ и Fe3+ («качественные» реакции)
Распознавание ионов Fe2+ и Fe3+ в водных растворах производят с помощью сложных комплексных соединений - K3, красная кровяная соль, и K4, жёлтая кровяная соль, соответственно. В обеих реакциях выпадает осадок насыщенного синего цвета с одинаковым количественным составом, но различным положением железа с валентностью +2 и +3. Этот осадок также часто называют берлинской лазурью или турнбуллевой синью.
Реакция, записанная в ионном виде
Fe2++K++3- K+1Fe+2
Fe3++K++4- K+1Fe+3
Хороший реактив для выявления Fe3+ — тиоцианат-ион (NCS-)
Fe3++ NCS- 3- — эти соединения имеют ярко-красную («кровавую») окраску.
Этот реактив, например, тиоцианат калия (формула - KNCS), позволяет определить даже ничтожно малую концентрацию железа в растворах. Так, он способен при исследовании водопроводной воды определить, не заржавели ли трубы.
ОПРЕДЕЛЕНИЕ
Железо - элемент восьмой группы четвёртого периода Периодической системы химических элементов Д. И. Менделеева.
А томный номер — 26. Символ – Fe (лат. «ferrum»). Один из самых распространённых в земной коре металлов (второе место после алюминия).
Физические свойства железа
Железо – металл серого цвета. В чистом виде оно довольно мягкое, ковкое и тягучее. Электронная конфигурация внешнего энергетического уровня – 3d 6 4s 2 . В своих соединениях железо проявляет степени окисления «+2» и «+3». Температура плавления железа – 1539С. Железо образует две кристаллические модификации: α- и γ-железо. Первая из них имеет кубическую объемноцентрированную решетку, вторая – кубическую гранецентрированную. α-Железо термодинамически устойчиво в двух интервалах температур: ниже 912 и от 1394С до температуры плавления. Между 912 и 1394С устойчиво γ-железо.
Механические свойства железа зависят от его чистоты – содержания в нем даже весьма малых количеств других элементов. Твердое железо обладает способностью растворять в себе многие элементы.
Химические свойства железа
Во влажном воздухе железо быстро ржавеет, т.е. покрывается бурым налетом гидратированного оксида железа, который вследствие своей рыхлости не защищает железо от дальнейшего окисления. В воде железо интенсивно корродирует; при обильном доступе кислорода образуются гидратные формы оксида железа (III):
2Fe + 3/2O 2 + nH 2 O = Fe 2 O 3 ×H 2 O.
При недостатке кислорода или при затрудненном доступе образуется смешанный оксид (II, III) Fe 3 O 4:
3Fe + 4H 2 O (v) ↔ Fe 3 O 4 + 4H 2 .
Железо растворяется в соляной кислоте любой концентрации:
Fe + 2HCl = FeCl 2 + H 2 .
Аналогично происходит растворение в разбавленной серной кислоте:
Fe + H 2 SO 4 = FeSO 4 + H 2 .
В концентрированных растворах серной кислоты железо окисляется до железа (III):
2Fe + 6H 2 SO 4 = Fe 2 (SO 4) 3 + 3SO 2 + 6H 2 O.
Однако, в серной кислоте, концентрация которой близка к 100%, железо становится пассивным и взаимодействия практически не происходит. В разбавленных и умеренно концентрированных растворах азотной кислоты железо растворяется:
Fe + 4HNO 3 = Fe(NO 3) 3 + NO +2H 2 O.
При высоких концентрациях азотной кислоты растворение замедляется и железо становится пассивным.
Как и другие металлы железо вступает в реакции с простыми веществами. Реакции взаимодействия железа с галогенами (вне зависимости от типа галогена) протекают при нагревании. Взаимодействие железа с бромом протекает при повышенном давлении паров последнего:
2Fe + 3Cl 2 = 2FeCl 3 ;
3Fe + 4I 2 = Fe 3 I 8 .
Взаимодействие железа с серой (порошок), азотом и фосфором также происходит при нагревании:
6Fe + N 2 = 2Fe 3 N;
2Fe + P = Fe 2 P;
3Fe + P = Fe 3 P.
Железо способно реагировать с такими неметаллами, как углерод и кремний:
3Fe + C = Fe 3 C;
Среди реакций взаимодействия железа со сложными веществами особую роль играют следующие реакции — железо способно восстанавливать металлы, стоящие в ряду активности правее него, из растворов солей (1), восстанавливать соединения железа (III) (2):
Fe + CuSO 4 = FeSO 4 + Cu (1);
Fe + 2FeCl 3 = 3FeCl 2 (2).
Железо, при повышенном давлении, реагирует с несолеобразующим оксидом – СО с образованием веществ сложного состава – карбонилов — Fe(CO) 5 , Fe 2 (CO) 9 и Fe 3 (CO) 12 .
Железо при отсутствии примесей устойчиво в воде и в разбавленных растворах щелочей.
Получение железа
Основной способ получения железа – из железной руды (гематит, магнетит) или электролиз растворов его солей (в этом случае получают «чистое» железо, т.е. железо без примесей).
Примеры решения задач
ПРИМЕР 1
Задание | Железная окалина Fe 3 O 4 массой 10 г была сначала обработана 150 мл раствора соляной кислоты (плотность 1,1 г/мл) с массовой долей хлороводорода 20%, а затем в полученный раствор добавили избыток железа. Определите состав раствора (в % по массе). |
Решение |
Запишем уравнения реакций согласно условию задачи:
8HCl + Fe 3 O 4 = FeCl 2 +2FeCl 3 + 4H 2 O (1); 2FeCl 3 + Fe = 3FeCl 2 (2). Зная плотность и объем раствора соляной кислоты, можно найти его массу: m sol (HCl) = V(HCl) × ρ (HCl); m sol (HCl) = 150×1,1 = 165 г. Рассчитаем массу хлороводорода: m(HCl) = m sol (HCl) ×ω(HCl)/100%; m(HCl) = 165×20%/100% = 33 г. Молярная масса (масса одного моль) соляной кислоты, рассчитанная с помощью таблицы химических элементов Д.И. Менделеева – 36,5 г/моль. Найдем количество вещества хлороводорода: v(HCl) = m(HCl)/M(HCl); v(HCl) = 33/36,5 = 0,904 моль. Молярная масса (масса одного моль) окалины, рассчитанная с помощью таблицы химических элементов Д.И. Менделеева – 232 г/моль. Найдем количество вещества окалины: v(Fe 3 O 4) = 10/232 = 0,043 моль. Согласно уравнению 1, v(HCl): v(Fe 3 O 4) = 1:8, следовательно, v(HCl) = 8 v(Fe 3 O 4) = 0,344 моль. Тогда, количество вещества хлородорода, рассчитанное по уравнению (0,344 моль) будет меньше, чем указанное в условии задачи (0,904 моль). Следовательно, соляная кислота находится в избытке и будет протекать еще одна реакция: Fe + 2HCl = FeCl 2 + H 2 (3). Определим количество вещества хлоридов железа, образующихся в результате первой реакции (индексами обозначим конкретную реакцию): v 1 (FeCl 2):v(Fe 2 O 3) = 1:1 = 0,043 моль; v 1 (FeCl 3):v(Fe 2 O 3) = 2:1; v 1 (FeCl 3) = 2×v(Fe 2 O 3) = 0,086 моль. Определим количество хлороводорода, которое не прореагировало в реакции 1 и количество вещества хлорида железа (II), образовавшееся в ходе реакции 3: v rem (HCl) = v(HCl) – v 1 (HCl) = 0,904 – 0,344 = 0,56 моль; v 3 (FeCl 2): v rem (HCl) = 1:2; v 3 (FeCl 2) = 1/2×v rem (HCl) = 0,28 моль. Определим количество вещества FeCl 2 , образовавшегося в ходе реакции 2, общее количество вещества FeCl 2 и его массу: v 2 (FeCl 3) = v 1 (FeCl 3) = 0,086 моль; v 2 (FeCl 2): v 2 (FeCl 3) = 3:2; v 2 (FeCl 2) = 3/2× v 2 (FeCl 3) = 0,129 моль; v sum (FeCl 2) = v 1 (FeCl 2) + v 2 (FeCl 2) + v 3 (FeCl 2) = 0,043+0,129+0,28 = 0,452 моль; m(FeCl 2) = v sum (FeCl 2) ×M(FeCl 2) = 0,452×127 = 57,404 г. Определим количество вещества и массу железа, вступившего в реакции 2 и 3: v 2 (Fe): v 2 (FeCl 3) = 1:2; v 2 (Fe) = 1/2× v 2 (FeCl 3) = 0,043 моль; v 3 (Fe): v rem (HCl) = 1:2; v 3 (Fe) = 1/2×v rem (HCl) = 0,28 моль; v sum (Fe) = v 2 (Fe) + v 3 (Fe) = 0,043+0,28 = 0,323 моль; m(Fe) = v sum (Fe) ×M(Fe) = 0,323 ×56 = 18,088 г. Вычислим количество вещества и массу водорода, выделившегося в реакции 3: v(H 2) = 1/2×v rem (HCl) = 0,28 моль; m(H 2) = v(H 2) ×M(H 2) = 0,28 ×2 = 0,56 г. Определяем массу полученного раствора m’ sol и массовую долю FeCl 2 в нём: m’ sol = m sol (HCl) + m(Fe 3 O 4) + m(Fe) – m(H 2); |
17. d -элементы.Железо, общая характеристика, свойства. Оксиды и гидроксиды, КО и ОВ характеристика, биороль, способность к комплексообразованию.
1.Общая характеристика.
Железо - d-элемент побочной подгруппы восьмой группы четвёртого периода ПСХЭ с атомным номером 26.
Один из самых распространённых в земной коре металлов (второе место после алюминия).
Простое вещество железо - ковкий металл серебристо-белого цвета с высокой химической реакционной способностью: железо быстро корродирует при высоких температурах или при высокой влажности на воздухе.
4Fe + 3O2 + 6H2O = 4Fe(OH)3
В чистом кислороде железо горит, а в мелкодисперсном состоянии самовозгорается и на воздухе.
3Fe + 2O2 = FeO + Fe2O3
3Fe + 4H2O = FeO*Fe2O3
FeO*Fe2O3 = Fe3O4 (железная окалина)
Собственно, железом обычно называют его сплавы с малым содержанием примесей (до 0,8 %), которые сохраняют мягкость и пластичность чистого металла. Но на практике чаще применяются сплавы железа с углеродом: сталь (до 2,14 вес. % углерода) и чугун (более 2,14 вес. % углерода), а также нержавеющая (легированная) сталь с добавками легирующих металлов (хром,марганец, никель и др.). Совокупность специфических свойств железа и его сплавов делают его «металлом № 1» по важности для человека.
В природе железо редко встречается в чистом виде, чаще всего оно встречается в составе железо-никелевых метеоритов. Распространённость железа в земной коре - 4,65 % (4-е место после O, Si, Al). Считается также, что железо составляет бо́льшую часть земного ядра.
2.Свойства
1.Физ.св-ва. Железо - типичный металл, в свободном состоянии - серебристо-белого цвета с сероватым оттенком. Чистый металл пластичен, различные примеси (в частности - углерод) повышают его твёрдость и хрупкость. Обладает ярко выраженными магнитными свойствами. Часто выделяют так называемую «триаду железа» - группу трёх металлов (железо Fe,кобальт Co, никель Ni), обладающих схожими физическими свойствами, атомными радиусами и значениями электроотрицательности.
2.Хим.св-ва.
Степень окисления |
Оксид |
Гидроксид |
Характер |
Примечания |
Слабоосновный |
||||
Очень слабое основание, иногда - амфотерный |
||||
Не получен |
|
Кислотный |
Сильный окислитель |
Для железа характерны степени окисления железа - +2 и +3.
Степени окисления +2 соответствует чёрный оксид FeO и зелёный гидроксид Fe(OH) 2 . Они имеют основный характер. В солях Fe(+2) присутствует в виде катиона. Fe(+2) - слабый восстановитель.
Степени окисления +3 соответствуют красно-коричневый оксид Fe 2 O 3 и коричневый гидроксид Fe(OH) 3 . Они носят амфотерный характер, хотя и кислотные, и основные свойства у них выражены слабо. Так, ионы Fe 3+ нацело гидролизуются даже в кислой среде. Fe(OH) 3 растворяется (и то не полностью), только в концентрированных щелочах. Fe 2 O 3 реагирует со щелочами только при сплавлении, давая ферриты (формальные соли кислоты несуществующей в свободном виде кислоты HFeO 2):
Железо (+3) чаще всего проявляет слабые окислительные свойства.
Степени окисления +2 и +3 легко переходят между собой при изменении окислительно-восстановительных условий.
Кроме того, существует оксид Fe 3 O 4 , формальная степень окисления железа в котором +8/3. Однако этот оксид можно также рассматривать как феррит железа (II) Fe +2 (Fe +3 O 2) 2 .
Также существует степень окисления +6. Соответствующего оксида и гидроксида в свободном виде не существует, но получены соли - ферраты (например, K 2 FeO 4). Железо (+6) находится в них в виде аниона. Ферраты являются сильными окислителями.
Чистое металлическое железо устойчиво в воде и в разбавленных растворах щелочей . Железо не растворяется в холодных концентрированных серной и азотной кислотах из-за пассивации поверхности металла прочной оксидной плёнкой. Горячая концентрированная серная кислота, являясь более сильным окислителем, взаимодействует с железом.
С соляной и разбавленной (приблизительно 20%-й) серной кислотами железо реагирует с образованием солей железа(II):
При взаимодействии железа с приблизительно 70%-й серной кислотой при нагревании реакция протекает с образованием сульфата железа(III) :
3.Оксиды и гидроксиды, КО и ОВ хар-ка…
Соединения железа (II)
Оксид железа(II) FeO обладает основными свойствами, ему отвечает основание Fe(OH) 2 . Соли железа (II) обладают светло-зелёным цветом. При их хранении, особенно во влажном воздухе, они коричневеют за счёт окисления до железа (III). Такой же процесс протекает при хранении водных растворов солей железа(II):
Из солей железа(II) в водных растворах устойчива соль Мора - двойной сульфат аммония и железа(II) (NH 4) 2 Fe(SO 4) 2 ·6Н 2 O.
Реактивом на ионы Fe 2+ в растворе может служить гексацианоферрат(III) калия K 3 (красная кровяная соль). При взаимодействии ионов Fe 2+ и 3− выпадает осадоктурнбулевой сини :
Для количественного определения железа (II) в растворе используют фенантролин , образующий с железом (II) красный комплекс FePhen 3 в широком диапазоне рН (4-9)
Соединения железа (III)
Оксид железа(III) Fe 2 O 3 слабо амфотерен , ему отвечает ещё более слабое, чем Fe(OH) 2 , основание Fe(OH) 3 , которое реагирует с кислотами:
Соли Fe 3+ склонны к образованию кристаллогидратов. В них ион Fe 3+ как правило окружен шестью молекулами воды. Такие соли имеют розовый или фиолетовый цвет.Ион Fe 3+ полностью гидролизуется даже в кислой среде. При рН>4 этот ион практчиески полностью осаждается в виде Fe(OH) 3:
При частичном гидролизе иона Fe 3+ образуются многоядерные оксо- и гидроксокатионы, из-за чего растворы приобретают коричневый цвет.Основные свойства гидроксида железа(III) Fe(OH) 3 выражены очень слабо. Он способен реагировать только с концентрированными растворами щелочей:
Образующиеся при этом гидроксокомплексы железа(III) устойчивы только в сильно щелочных растворах. При разбавлении растворов водой они разрушаются, причём в осадок выпадает Fe(OH) 3 .
При сплавлении со щелочами и оксидами других металлов Fe 2 O 3 образует разнообразные ферриты :
Соединения железа(III) в растворах восстанавливаются металлическим железом:
Железо(III) способно образовывать двойные сульфаты с однозарядными катионами типа квасцов , например, KFe(SO 4) 2 - железокалиевые квасцы, (NH 4)Fe(SO 4) 2 - железоаммонийные квасцы и т. д.
Для качественного обнаружения в растворе соединений железа(III) используют качественную реакцию ионов Fe 3+ с тиоцианат-ионами SCN − . При взаимодействии ионов Fe 3+ с анионами SCN − образуется смесь ярко-красных роданидных комплексов железа 2+ , + , Fe(SCN) 3 , - . Состав смеси (а значит, и интенсивность её окраски) зависит от различных факторов, поэтому для точного качественного определения железа этот метод неприменим.
Другим качественным реактивом на ионы Fe 3+ служит гексацианоферрат(II) калия K 4 (жёлтая кровяная соль). При взаимодействии ионов Fe 3+ и 4− выпадает ярко-синий осадок берлинской лазури :
Соединения железа (VI)
Ферраты - соли не существующей в свободном виде железной кислоты H 2 FeO 4 . Это соединения фиолетового цвета, по окислительным свойствам напоминающие перманганаты, а по растворимости - сульфаты. Получают ферраты при действии газообразного хлора или озона на взвесь Fe(OH) 3 в щелочи , например, феррат(VI) калия K 2 FeO 4 . Ферраты окрашены в фиолетовый цвет.
Ферраты также можно получить электролизом 30%-ного раствора щелочи на железном аноде:
Ферраты - сильные окислители. В кислой среде разлагаются с выделением кислорода:
Окислительные свойства ферратов используют для обеззараживания воды .
4.Биороль
1)В живых организмах железо является важным микроэлементом, катализирующим процессы обмена кислородом (дыхания).
2)Обычно железо входит в ферменты в виде комплекса.В частности, этот комплекс присутствует в гемоглобине - важнейшем белке, обеспечивающем транспорт кислорода с кровью ко всем органам человека и животных. И именно он окрашивает кровь в характерный красный цвет.
4)Избыточная доза железа (200 мг и выше) может оказывать токсическое действие. Передозировка железа угнетает антиоксидантную систему организма, поэтому употреблять препараты железа здоровым людям не рекомендуется.